Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gideon Steyl

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa

Correspondence e-mail: geds12@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.024$
$w R$ factor $=0.078$
Data-to-parameter ratio $=21.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(Tricyclohexylphosphine)bis(tropolonato)palladium(II)

A new type of α-diketone palladium(II) complex containing a tertiary phosphine, namely the title compound, $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)$], crystallizes with a square-planar geometry about the palladium(II) metal centre. One tropolonate ligand is bonded in a bidentate chelating mode, while the second one is bonded through a single O atom to the palladium(II) metal centre. The $\mathrm{Pd}-\mathrm{O}$ distances range from 1.9907 (13) to 2.0702 (12) \AA, and the $\mathrm{O}-\mathrm{Pd}-\mathrm{O}$ bite angle for the bidentate tropolonate ligand is $80.30(5)^{\circ}$.

Comment

A variety of bis- β-diketonate palladium(II) complexes have been characterized to date for acetylacetonato type ligands (Cambridge Structural Database; Version 5.27; Allen, 2002). The addition of tertiary phosphines to these types of complex has resulted in only three reported structures (Okeya et al., 1984; Ooi et al., 1983; Siedle et al., 1982). To date, no α-diketone palladium(II) complexes containing a phosphine ligand have been reported. In the current paper, a tricyclohexylphosphine derivative of bis(tropolonato)palladium(II) (Steyl, 2005) is presented as an example of a mono/bidentate tropolonate complex.

(I)

The title compound, (I), crystallizes with a slightly distorted square-planar geometry about the palladium(II) metal centre. The palladium atom is elevated by 0.0501 (1) \AA above the plane defined by the four coordinated atoms, viz. O11, O12, O 22 and P . The $\mathrm{Pd}-\mathrm{O}$ distances do not differ from those observed for the bis(tropolonato)palladium(II) complex (Steyl, 2005). The $\mathrm{O} 12-\mathrm{Pd}-\mathrm{O} 11$ bidentate bite angle [$80.30(5)^{\circ}$; Table 1] is less than the value of $81.8(1)^{\circ}$ observed in the bis(tropolonato)palladium(II) complex.

An interesting feature in (I) is the rotation of one tropolonato group to form a monodentate ligand (Fig. 1). A similar situation was observed in $\left[\mathrm{Rh}(\operatorname{tropBr} 3) \mathrm{CO}\left(\mathrm{PPh}_{3}\right)\right]$ (trop is 2-hydroxy-2,4,6-cycloheptatrienone) and $\quad\left[\mathrm{Rh}\left(\operatorname{tropBr}_{3}\right) \mathrm{CO}-\right.$

Figure 1
View of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2
A fraction of the unit cell contents, showing the intermolecular hydrogen bonding and $\pi-\pi$ stacking as dashed lines [symmetry codes: (i) $x,-y, z-$ $\frac{1}{2}$; (ii) $\left.-x,-y,-z\right]$.
$\left.\left(\mathrm{AsPh}_{3}\right)\right]$ (Roodt et al., 2003), although a formal monodentate ligand system was not apparent. The monodentate tropolonate ligand is nearly perpendicular [78.4 (1) ${ }^{\circ}$] to the mean plane defined by the four atoms coordinating the palladium metal centre. Uncoordinated atom O21 lies 2.812 (2) \AA from the Pd atom and is displaced from the apical position with a $\mathrm{Pd}-\mathrm{O} 22 \ldots \mathrm{O} 21$ angle of 72.4 (2) ${ }^{\circ}$. The short interplanar distance of 3.51 (1) \AA between the two bidentate tropolonate ligands related by the symmetry operation $(-x,-y,-z)$ indicates the presence of $\pi-\pi$ interactions.

In conclusion, the addition of tertiary phosphine to the bis(tropolonato)palladium(II) complex resulted in the weakening of the bidentate character of one tropolonato ligand. However, complete dissociation or the formation of a Pd C(tropolonate) bond as found in acetylacetonate-type complexes (Ooi et al., 1983) were not observed.

Experimental

The title complex was synthesized by the addition of $\mathrm{PCy}_{3}(88 \mathrm{mg}$, 0.316 mmol) to an acetone solution of the bis(tropolonato)palladium(II) complex ($100 \mathrm{mg}, 0.287 \mathrm{mmol}$). The solution changed colour from orange to red. On evaporation of the solvent, crystals suitable for X-ray diffraction were obtained (yield: $60 \mathrm{mg}, 33 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600.28 \mathrm{MHz}\right): \delta 7.24(d, 4), 7.17(d d, 4), 6.74(t, 2), 2.05$ $(m, 3), 1.75(m, 24), 1.25(m, 6) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150.97 \mathrm{MHz}\right): \delta$ 183.2 (C11, C12, C21, C22), 136.0 (C14, C16, C24, C26), 126.3 (C13, C17, C23, C27), 124.3 (C15, C25), 32.01 (d, C31, C41, C51), 28.27 (C32, C36, C42, C46, C52, C56), 27.45 (C33, C35, C43, C45, C53, C55), 26.25 (C34, C44, C54) with positions of C atoms confirmed by HSQC and HMBC data. Exchange is observed in CDCl_{3} of tropolonate moieties. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 242.98 \mathrm{MHz}\right): \delta 42.31(s)$.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{P}\right)\right]$
$M_{r}=629.05$
Monoclinic, C2/c
$a=17.6699$ (4) A
$b=27.7962$ (6) \AA
$c=12.2289$ (2) \AA
$\beta=94.523(1)^{\circ}$
$V=5987.6$ (2) \AA^{3}
$Z=8$

$$
D_{x}=1.396 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 7765 reflections
$\theta=2.5-28.2^{\circ}$
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, red
$0.37 \times 0.31 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.776, T_{\text {max }}=0.936$
81120 measured reflections
7406 independent reflections
6361 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-23 \rightarrow 23$
$k=-37 \rightarrow 37$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.078$
$S=1.12$
7406 reflections
343 parameters
H-atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.039 P)^{2}\right. \\
\\
\quad+3.4366 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.29 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Pd}-\mathrm{O} 12$	$1.9907(13)$	$\mathrm{Pd}-\mathrm{O} 11$	$2.0702(12)$
$\mathrm{Pd}-\mathrm{O} 22$	$2.0132(13)$	$\mathrm{Pd}-\mathrm{P}$	$2.2342(4)$
O12-Pd-O11	$80.30(5)$	$\mathrm{O} 12-\mathrm{Pd}-\mathrm{P}$	$93.23(4)$
$\mathrm{O} 22-\mathrm{Pd}-\mathrm{O} 11$	$95.13(5)$	$\mathrm{O} 22-\mathrm{Pd}-\mathrm{P}$	$91.32(4)$
$\mathrm{O} 11-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 12$	$-6.6(3)$	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 22$	$5.3(3)$

metal-organic papers

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C46-H46A $\cdots \mathrm{O} 21$	0.97	2.43	$3.348(3)$	159
C13-H13 \cdots O11				
C15-H15 \cdots O21		0.93	2.56	$3.456(2)$
161				

Symmetry codes: (i) $x,-y, z-\frac{1}{2}$; (ii) $-x,-y,-z$.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the parent atom.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINTPlus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Putz, 2004); software used to prepare material for publication: SHELXL97.

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. We thank Mr L. Kirsten and Dr A. Muller for the data collection. Part of
this material is based on work supported by the South African National Research Foundation (NRF) under grant number GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brandenburg, K. \& Putz, H. (2004). DIAMOND. Release 3.0e. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany.
Bruker (1998). SADABS. Version 2004/1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). SAINT-Plus (including XPREP). Version 7.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
Okeya, S., Miyamoto, T., Ooi, S., Nakamura, Y. \& Kawaguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 395-404.
Ooi, S., Matsushita, T., Nishimoto, K., Okeya, S., Nakamura, Y. \& Kawaguchi, S. (1983). Bull. Chem. Soc. Jpn, 57, 3297-3301.

Roodt, A., Otto, S. \& Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siedle, A. R., Newmark, R. A. \& Pignolet, L. H. (1982). J. Am. Chem. Soc. 104, 6584-6590.
Steyl, G. (2005). Acta Cryst. E61, m1860-m1862.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

